
1

1

Where Is Database Research
Headed?

Jeffrey D. Ullman
DASFAA

March 26, 2003

2

Outline

1. Core values for database research.
“Biggest” data.
Query optimization.

2. Some interesting directions.

3

New Directions

1. Information integration.
2. Stream processing.
3. Semistructured data and XML.
4. Peer-to-peer and grid databases.
5. Data mining.

4

Core Database Values

Obvious: we deal with the largest
amount of data possible.
Less obvious: very-high-level languages.

Big data must be dealt with in uniform ways.

Least obvious: query optimization
essential for success.

Compare APL (failure) with SQL (success).

5

New Directions

1. Information integration.
2. Stream processing.
3. Semistructured data and XML.
4. Peer-to-peer and grid databases.
5. Data mining.

6

Information Integration

Related sources of data need to be
viewed as one whole.
Applications: catalogs (seeing products
from many suppliers), digital libraries,
scientific databases, enterprise-wide
information resources, etc., etc.

2

7

Local and Global Schemas

Sources each have their own local
schema = ways their data is stored,
organized, and represented.
Integration requires a global schema
and mechanisms to translate between
the global schema and each local
schema.

8

Two Approaches

1. Warehousing :
• Collect data from sources into a

“warehouse” periodically.
• Do queries at the warehouse, while the

sources execute transactions invisibly.

2. Mediation :
• Virtual warehouse processes queries by

translating between common schema and
local schemas at sources.

9

Warehouse Diagram

Warehouse

Wrapper Wrapper

Source 1 Source 2

10

A Mediator

Mediator

Wrapper Wrapper

Source 1 Source 2

User query

Query
Query

QueryQuery

Result

Result

Result

Result

Result

11

Two Mediation Approaches

1. Query-centric : Mediator processes
queries into steps executed at sources.

Enosys sells first example as BEA’s “liquid
data.”

2. View-centric : Sources are defined in
terms of global relations; mediator finds
all ways to build query from views.

12

Very Simple Example

Suppose Dell wants to buy a bus and a
disk that share the same protocol.
Global schema:

Buses(manf,model,protocol)
Disks(manf,model,protocol)

Local schemas: each bus or disk
manufacturer has a (model,protocol)
relation --- manf is implied.

3

13

Example: Query-Centric

Mediator might start by querying each bus
manufacturer for model-protocol pairs.

The wrapper would turn them into triples by
adding the manf component.

Then, for each protocol returned, mediator
queries disk manufacturers for disks with
that protocol.

Again, wrapper adds manf component.
14

Example: View-Centric

Sources’ capabilities are defined in terms
of the global predicates.

E.g., Hitachi’s disk database could be defined
by HitachiView(M,P) = Disks(’Hitachi’,M,P).

Mediator discovers all combinations of a
bus and disk “view,” equijoined on the
protocol components.

Theory: “answering queries using views” ---
like fitting puzzle pieces together.

15

Comparison

Query-centric is simpler to implement.
Lets you have control of what the mediator
does.

View centric is more extensible.
Same query engine works for any number of
sources.
Add a new source simply by defining what it
contributes as a view of the global schema.

16

Research Issues

Optimization, optimization, optimization.
In query centric systems: how do we
choose a plan?
• E.g., is it better to ask about buses first, or

disks?

In view-centric systems, how do we select a
sufficient set of solutions to get most or all
of the possible answers?

17

New Directions

1. Information integration.
2. Stream processing.
3. Semistructured data and XML.
4. Peer-to-peer and grid databases.
5. Data mining.

18

Stream Management Systems

Adds to the relation a stream datatype
= infinite sequence of tuples that arrive
at a port one-at-a-time.
Applications: Telecom billing, intrusion
detection, monitoring Web hits, sensor
networks, etc., etc.

4

19

Stream-DBMS Architecture

Conventional
relations

Scratch
storage

Query
processor

Stream
inputs

Stream
outputs

Ad-hoc queries Standing queries

20

Stanford Approach (Widom,
Motwani)

Central idea is the window, a relation
that is formed from a stream by some
rule.

Examples: “last 10 tuples,” “all tuples in
the past 24 hours.”

Query language is SQL-like, with diction
for converting a stream to a window to
a relation.

21

Example:

SELECT …
FROM Stream1 [last 10] AS Window1,…
WHERE Window1.a = 5 AND …

22

MIT-Centered Approach
(Stonebraker, others)

Define and implement common
operations on streams.
Query language is algebraic: a
sequence of operations to be applied to
source streams and the results of other
operations.

23

Research Challenges

Again, optimization is central.
New language constructs and data types
make old ideas less useful.

Semantics is not 100% clear.
Example: when you join two windows created
with different time limits, what does the result
represent in terms of the original streams?
• It matters if you want to apply algebraic laws to

expressions.

24

New Directions

1. Information integration.
2. Stream processing.
3. Semistructured data and XML.
4. Peer-to-peer and grid databases.
5. Data mining.

5

25

Semistructured Data

This data model uses trees or graphs
instead of relations.
Key application: information
integration, where global data is
perceived as “flexible objects,” with a
variety of fields and structures.
Evolved into XML, XSL, XPATH,
XQUERY, etc.

26

Example: Semistructured Data
Graph

Bud

A.B.

Gold1995

Maple St.Joe’s

M’lob

beer beer
bar

manfmanf

servedAt

name

name
name

addr

prize

year award

root

The bar object
for Joe’s Bar

The beer object
for Bud

Notice
unusual
data

27

XML and Semistructured Data

XML (Extensible Markup Language) uses a
semistructured data model to represent
documents. Example:

<BARDOC><BAR><NAME>Joe’s</NAME>
<ADDR>Maple St.</ADDR></BAR>

<BAR> … </BAR> …
</BARDOC>

28

XML Applications

Currently used as the document format
for many systems that exchange
information.

These documents rarely appear on the
Web, so XML appears to be unused.

XML documents may become the
standard element in database systems.

Relation is a special case.

29

Querying XML Data

XQUERY is new standard for querying
XML documents.

Very-high-level, similar to SQL.

Research just beginning on how to
optimize queries about XML documents.

Successful techniques not like those
applied successfully in SQL systems.

30

New Directions

1. Information integration.
2. Stream processing.
3. Semistructured data and XML.
4. Peer-to-peer and grid databases.
5. Data mining.

6

31

Peer-to-Peer and Grids

Peer-to-peer systems are application-
level attempts to share information
and/or processes.
Grid computing is an attempt to bring
P2P support to the operating-system
level.

32

P2P Applications

1. File sharing as in Napster, Kazaa, etc.
2. Specific scientific applications:

Seti@home, Folding@home.
3. Distributed databases, e.g., digital

libraries.
4. Replication within an intranet for high

availability.

33

Additional Grid Goals

1. Scientific applications routinely solved
using a network of workstations.

2. Reselling of unused cycles.
3. Global resources, e.g., buy your

storage over the Internet rather than
manage your own local disks.

4. Massive multiplayer games.

34

Grid Pro’s and Con’s

+ Possibly a good architecture for
scientific computing.

+ Cross-platform support may lead to
more P2P applications.

-- Businesses involving trade in resources
among untrusted players is unlikely to
win converts.

35

Peer-to-Peer Databases

Data is distributed among independent
sources.
Similar to information-integration, but
much looser constraints on
cooperation.

36

P2P DBMS Architecture

Me

Peers

My data

My
clients

My
requests

Requests
from others

7

37

P2P Research Issues

1. Strategies for trading storage.
• How do I accept bids for someone to

make a copy of my data? Will they keep
it forever?

• Storage auction strategies?
2. Query and search strategies.

• How far to search?
• How to manage competing requests?
• Use of localized indexes?

38

Search Problem --- Continued

Napster was a completely centralized
index.
Kazaa is a completely distributed index
--- you can only find things by
searching neighbors recursively.
Optimum is undoubtedly some
compromise, where nodes know about
data at some, but not all, others.

39

New Directions

1. Information integration.
2. Stream processing.
3. Semistructured data and XML.
4. Peer-to-peer and grid databases.
5. Data mining.

40

Data Mining

Means different things to different
communities.
Underlying theme: build models that
represent data approximately.
Examples: decision trees, clustering,
hidden Markov models, Bayesian
models, frequent itemsets (association
rules) etc. etc.

41

The Database View

Main research problem is how to
implement very complicated queries
on very large data efficiently.

1. Invention of new algorithms or
algorithms adapted to non-main-memory
data.

2. Can it be done in SQL? How do you
optimize these queries?

42

Example --- Frequent Pairs
Items={milk, coke, pepsi, beer, juice}.
Support = pair appears in at least 3
“baskets.”

B1 = {m, c, b} B2 = {m, p, j}
B3 = {m, b} B4 = {c, j}
B5 = {m, p, b} B6 = {m, c, b, j}
B7 = {c, b, j} B8 = {b, c}

Frequent pairs: {m, b}, {c, b}, {j, c}.

8

43

Applications

1. Stores use frequent itemsets to plan
layout of store, sale strategies.

Example, run sale on hamburger; raise the
price of ketchup.

2. Looked at correctly (“item” =
document, “basket” = sentence),
frequent pairs = plagiarized documents.

3. Correlated pairs useful for on-line
sellers to predict what you will buy.

44

Frequent-Pair Algorithms

Model: baskets in a file; “passes”
stream the file, while main-memory is
used to process in some way.
Simplest idea: count all pairs in
memory.

Limited by size-of-memory > O(items2).

45

A-Priori Algorithm

1. On first pass, count only the number
of times each item appears.

2. Determine which items occur at least
as many times as the support
threshold s.

3. On second pass, count only pairs of
items that both appear alone at least s
times.

46

Picture of A-Priori

Item counts

Pass 1 Pass 2

Frequent items

Counts of
candidate

pairs

47

More Frequent-Pair Algorithms

Hashed-based improvements take
advantage of the fact that on the first
pass, most of main memory is unused.
Correlated-pair algorithms find rare, but
correlated events, e.g., books bought
by similar, small sets of customers.

“Min-hashing” is key idea.

48

Research Questions

How fast can you compute frequent
pairs with limited main memory?
What is the best SQL query when data
is stored as Baskets(bID, itemID),
rather than as a list of basket contents?
Similar questions in many other mining
areas, e.g., clustering.

9

49

The End

Thank you very much for listening.
Now go out and solve some of these
problems!

